
Multi-Modal Graph Inductive Learning with CLIP
Embeddings

Adi Srikanth
NYU Center for Data Science

aks9136@nyu.edu

Andre Chen
NYU Center for Data Science

alc9635@nyu.edu

David Roth
NYU Center for Data Science

dsr331@nyu.edu

Tanya Naheta
NYU Center for Data Science

tsn6109@nyu.edu

Abstract

Multimodal graph-based learning approaches can facilitate a better search expe-
rience at Zillow, whose data consists of listing images, descriptions, and other
metadata. We aim to use GraphSAGE, an inductive graph representation learning
framework, to learn representations using CLIP-initialized node embeddings[3, 10].
Specifically, we train a 2-layer GraphSAGE model using restricted fanout, mean
aggregation, ReLU nonlinearity and batch normalization and experiment with three
approaches for connecting new, previously unseen nodes to the training graph dur-
ing inference. Finally, we evaluate updated node embeddings on a cosine similarity-
based image-keyword link prediction task and compare their performance to link
prediction using embeddings initialized from a fine-tuned CLIP-ViT/32 as a base-
line. We find that across several different evaluation datasets at Zillow, GraphSAGE
does not conclusively outperform the baseline on link prediction. However, we find
that increasing connections to keyword labels improves GraphSAGE performance
relative to baseline, and note that on MS-COCO[6], a well-known research dataset
with human-generated keyword annotations, GraphSAGE generally outperforms
our baseline. Our code is available on Github.

1 Introduction

As web-scale product catalogs grow in size and dimension, the need for effective search and retrieval
assumes a more prominent role as a top priority, and often, a primary challenge. This problem is
made all the more challenging on datasets that support multiple modalities (e.g. images and text).
Zillow, a leading marketplace for real estate and rentals, maintains such a dataset; their database
contains a collection of text descriptions and images for the roughly 135 million properties hosted on
their platform. Associating images with text descriptions can facilitate search, filtering and indexing
over image data and can be critical for surfacing relevant listings to users. In this work, we investigate
methods for using aligned image and text encoders (e.g. CLIP) in combination with Graph Neural
Networks (GNNs) to extract text attributes from images by framing the problem as a link prediction
task over a bipartite graph of images and text attributes.

In particular, we evaluate the precision and recall performance of an inductive GraphSAGE model
using CLIP embeddings as node features at attribute detection on the Common Objects in Context
dataset [6], as well as a dataset of roughly 80,000 images and 1,500 weakly labeled text attributes
made available by the Applied Science and Machine Learning group at Zillow. We find that naive
neighborhood mean aggregation and graph convolution approach match but do not conclusively
outperform pair-only link prediction performance using Zillow fine-tuned CLIP embeddings. We

https://github.com/shrawat/NYU-Zillow-Capstone-2022-Team-A


explore the effects of neighborhood sampling method, model size and embedding dimension on link
prediction performance of our model and propose directions for improving on a non-aggregated
baseline. Additionally, we develop and evaluate different methods of incorporating unseen nodes into
an existing graph to perform inference over new nodes with a trained model.

2 Related Work

A promising, non-graphical approach to multimodal learning currently employed at Zillow is CLIP
(Contrastive Language-Image Pre-Training) [10], which uses contrastive learning to generate aligned
image and text embeddings for co-occurring image-text pairs. The encoders trained on 400M image-
caption pairs demonstrated zero-shot capabilities in image-text matching; We use CLIP encodings to
initialize image, and text (keyword and scene) representations for nodes in our graph. We evaluate
whether contrastively trained representations from large, open pretraining can benefit from aggregated
neighborhood information using graph proximity.

A substantial body of work exists on scalable graph representation learning methods [1, 2, 12, 5, 9, 11].
Deep learning based methods such as Structural Deep Network Embedding [? ] use multiple layers to
capture non-linear network structure and auto-encoders to embed graph nodes. Additionally, Large-
scale Information Network Embedding (LINE) extends on graph factorization methods to preserve
first and second-order proximities, thereby learning neighborhood network structures [11]. However,
most of these methods are inherently transductive, rather than inductive. In a comprehensive survey
on graph-based representation learning approaches, Khoshraftar and An describe transductive graph
learning techniques as those in which predictions must be made on nodes observed during training,
so they do not naturally generalize to unseen data [4]. In contrast, inductive approaches are especially
useful when operating on evolving graphs as they generate embeddings on unseen nodes and entirely
new subgraphs more efficiently. GraphSAGE is one such inductive approach, making it advantageous
for Zillow’s core need to constantly update listings and add new information to its platform. Indeed,
by learning functions to transform embeddings of new nodes rather than transforming embeddings
directly, trained GraphSAGE models can be easily run on new nodes to update their embeddings at
inference time [8].

Multimodal graph-based representation learning is well-motivated by applications in search- such as
multimodal search queries, thumbnail image selection, and personalization of query results. Misraa
et al. use inductive graph representation learning to build a multi-modal retrieval system for Adobe
Stock [8], which our project draws key approaches from and expands upon. Specifically, they leverage
GraphSAGE in their work to learn aggregation functions over multimodal graph data drawn from
the MS-COCO image-keyword annotation dataset that can generalize to new nodes, and introduce a
simple method for incorporating new nodes into the original training graph at inference time. The
latter component of their work is critical, as new nodes require inbound edges at inference time for
GraphSAGE to apply functions learned during training to update their feature representations. In our
work, we use a similar framework for training over multimodal data and experiment with three key
novel contributions: (1) we initialize image and text node embeddings with CLIP, (2) we evaluate
several additional heuristics for connecting new nodes at inference time to the original training graph,
and (3) we develop a simple link prediction approach for evaluation of output node representations.

3 Problem Definition and Algorithms

3.1 Task

We aim to take an inductive approach to graph learning, using the GraphSAGE graph convolutional
network (GCN) architecture as proposed in Hamilton et al. [3] to learn multimodal representations
using graph structure to improve on representations learned by Zillow’s CLIP encoder alone.

The inputs to our model are Zillow listing images and two types of textual attributes associated
with each image: (1) scenes, which provide a single category describing the overall setting and
context of an image (e.g. kitchen), and (2) keywords, which describe objects in the image (e.g. table,
granite countertops, etc.). The output of our method are node representations on a multimodal graph
of images, scenes, with known linkages between images and associated scenes and/or keywords
represented as bidirectional edges. Furthermore, the output graph should have the following properties:
(1) the node embedding space should be such that closer nodes in the graph score higher in some

2



similarity metric (e.g. cosine similarity), while distant / unconnected nodes should score lower, and
(2) new nodes can be easily added and incorporated into the graph embedding space. To enable
quantitative evaluation of our approach, we frame our evaluation as a link prediction task over a
bipartite graph of images and known text attributes. We evaluate our model’s ability to output high
probabilities for true, positive edges and low probabilities for non-existent, negative edges, and
compare this ability to Zillow’s baseline multimodal approach that does not use graph-based learning.

3.2 Algorithms

3.2.1 GraphSAGE

Figure 1: Illustration of GraphSAGE sampling and
aggregation process for representation learning

Given an input graph with nodes, node feature
embeddings, and edges, GraphSAGE utilizes a
convolutional graph neural network that learns
an aggregation function in an unsupervised fash-
ion to infer representations of connected nodes
and generalize to nodes not seen during train-
ing. In each layer of GraphSAGE, each node
samples a number of neighboring nodes, aggre-
gates their feature embeddings via a learnable
function, then applies a nonlinear transforma-
tion with normalization to produce an updated
node representation (Figure 1). Inclusion of
additional layers allows a node to receive aggre-
gated features from more distant neighbors in
the graph. During training, GraphSAGE uses
backpropagation to optimize a contrastive learning objective which seeks to maximize the cosine
similarity between nodes which co-occur on a fixed-length random walk and minimize cosine distance
between randomly sampled negative edges.

In our implementation, output representations are produced by a two-layer GraphSAGE network
with a mean-pooling aggregator function using a fixed number of neighbor nodes, controlled by the
“fanout” parameter, at each k-hop distance from the target node. Choices of aggregator function,
number of layers, and fanout are particularly critical; we discuss the implications of these decisions
in more detail in the experimental evaluation section.

3.2.2 Link Prediction

We measure performance on a link prediction task for node representations before GraphSAGE
updates (pre-trained CLIP embeddings) and after GraphSAGE updates to compare performance of
GraphSAGE against our baseline.

For efficient computation over all image and keyword nodes in our graph, we compute an NxM
cosine similarity matrix between our N image embeddings and M keyword embeddings. We frame
the prediction problem as a binary classification task, where for each keyword we predict whether it
belongs (1) or not (0) in each of the N images in the validation set based on some cosine similarity
threshold. We compute micro and macro-averaged precision, recall, and f1 scores over a range of
cosine similarity thresholds, and determine an optimal cosine similarity threshold for CLIP and
GraphSAGE based on macro-averaged f1-scores across all keywords.

4 Experimental Evaluation

4.1 Data

Our experimental design requires multimodal datasets that include images, scenes, and keywords.
This setup enables the construction of a bi-directional multi-modal graph in which images are
connected to both scene and keyword labels. To this end, we use the MS-COCO dataset and a dataset
provided by Zillow, both of which we describe in detail below.

3



4.1.1 MS-COCO Dataset

To complete initial development and validate our experimental pipeline on a more established, human-
verified dataset, we use the 2017 MS-COCO image-tag dataset containing 118K images and 80
unique keyword labels [6]. Each image is labeled with a number of keywords, while scene categories
for images are obtained using Zillow’s proprietary scene labeling algorithm.

4.1.2 Zillow Dataset

After developing our evaluation pipeline using the MS-COCO dataset, experiments are replicated
on Zillow data, which contain 83,000 listing images, 18 unique scenes, and 1500 unique keyword
attributes. Scene and keywords are attributed to each image using an existing proprietary algorithm at
Zillow. Note that relative to the MS-COCO dataset, keyword labels are relatively imbalanced; roughly
20% of the keywords account for 85% of all image labels in our Zillow dataset (in comparison,
65% of keywords in the MS-COCO dataset account for 85% of all image labels). We also retain
a smaller Zillow dataset with human-verified scene and keyword labels for final evaluation. This
dataset contains 9000 listing images, 30 unique scenes, and 21 unique keywords. With respect to
keywords in this dataset, we use only the 10 which co-occur with our training / validation dataset to
restrict final evaluation to in-vocabulary keywords. Moving forward, we refer to the smaller Zillow
dataset as the “test” set, and the larger Zillow dataset as the “development” set.

4.2 Methodology

4.2.1 Multimodal Graph Construction

We construct a homogeneous graph using the DeepGraph Python library (DGL) [13] with unique
images, keywords, and scenes represented as nodes and existing links between images and their
respective scenes and keywords as bidirectional edges. We do this for both the test and development
datasets independently.

To construct node representations as input to GraphSAGE, we initialize node embeddings using CLIP.
For the MS-COCO dataset, we use CLIP’s pre-trained image and text encoder with default settings,
while for Zillow data we obtain CLIP embeddings from a fine-tuned version of CLIP provided by
Zillow. We then partition the development graph into training and validation subgraphs by separating
image nodes in the graph into 70% training and 30% validation sets (scene and keyword nodes
were kept in both subgraphs). We split in this manner for two reasons: (1) we assume a fixed
vocabulary of keywords at Zillow and therefore evaluate using link prediction between new images
and in-vocabulary keywords, and (2) Zillow is able to obtain relatively high-fidelity scene labels for
new listing images, so we assume scene information is available at inference time.

4.2.2 GraphSAGE Training

To train our GraphSAGE model, we use edge-wise sampling from our training subgraph with a
negative sampling ratio of 1:1 to generate batches for input to the model. While we tried several
random negative sampling approaches, we found that uniform negative edge sampling (given source
node u, choose a node v from the set of all nodes V in the subgraph with equal probability to form a
negative edge with) to be the simplest and most effective approach. With respect to model parameters,
we tune the model with respect to negative sampling ratio, number of layers, and neighborhood fanout,
as we determined these were most impactful to model performance. Table 1 shows hyperparameter
tuning results for several top-performing configurations on the Zillow development set. For each
configuration, classification metrics are reported at the prediction threshold that produced the highest
f1-score.

We select optimal hyperparameters based on macro-averaged precision and therefore use 2 layers,
a 1:1 sampling ratio, and fanout of 3 across all GNN layers for evaluation on our Zillow test set.
We find that model performance benefits are negligible with > 2 GraphSAGE layers and excessive
fanout degrades performance. We considered that a weighted sum of neighbor representations could
counteract this effect, but leave exploration of weighting schemes (Graph Attention, Personalized
PageRank) for future work.

4



model metric score n_layers neg_sampling_ratio fanout

SAGE prec@max_recall 0.000487 2 1 [3]
SAGE prec@max_precision 0.001069 3 1 [3]
SAGE recall@max_recall 0.225256 2 1 [20]
SAGE recall@max_precision 0.214342 3 1 [5]

Table 1: Hyperparameter settings for the top performing SAGE models. Bold indicates that this was
the best performing model under that metric across both SAGE and CLIP.

4.2.3 GraphSAGE Evaluation

A potential use case for multimodal representation learning at Zillow is attribution of keywords from a
fixed vocabulary to new listing images in their database. Thus, we evaluate our GraphSAGE-updated
node embeddings against baseline CLIP embeddings on image-keyword link prediction.

One major question in our evaluation is whether inclusion of context from the training subgraph
improves link prediction performance over our validation subgraph. Thus, at inference time, we
experiment with three different approaches of seeding connections between the validation subgraph
and training subgraph to provide neighbors to validation nodes for embedding updates. These
approaches are outlined below and visualized in Figure 2:

1. Cosine similarity: follows a similar approach to one outlined in [8] to connect image nodes
from the validation subgraph to the top 5 most similar image and keyword nodes in the
training subgraph by cosine similarity

2. Scene: connect image nodes from the validation subgraph to the same scene nodes in the
training subgraph that they are connected to in the validation subgraph

3. Self (baseline): don’t connect validation image nodes to the training subgraph at all, and
instead add self-loops for validation image nodes

Figure 2: Illustration of different reconnection approaches tested at inference time

We try all three of these approaches with the validation subgraph from the development set as well
as the entire graph from the test set and report results below. In all three approaches, we simulate
having no knowledge of validation image-keyword links, as would be the case at inference time in a
production setting. We hypothesized that the additional context provided in approaches 1 or 2 would
yield performance gains in link prediction over approach 3.

4.3 Results

Below we show performance results on our link prediction tasks across our three evaluation datasets
(MS-COCO, Zillow development, and Zillow test). For each dataset, we present results for the same
four sets of experiments: CLIP (baseline) and graph-based methods using the three node reconnection
methods listed above.

Tables 2 and 3 show macro and micro-averaged precision, recall, and f1 scores, with top results
for each dataset in bold. Recall that metrics are averaged over 80 keyword classes for MS-COCO,

5



1500 keyword classes for Zillow development set, and 10 keyword classes for Zillow test set.
For each approach, we selected final cosine similarity thresholds for positive prediction based on
macro-averaged f1-score. We observe on the Zillow test set that our graph-based approach with
cosine reconnection slightly outperforms the CLIP baseline in recall and f1. while other approaches
are similar in performance to, but fail to outperform, the baseline. On MS-COCO, graph-based
approaches achieve better recall while the baseline achieves better precision at our optimal thresholds.
On the Zillow development set, it appears that our graph approaches significantly underperform our
baseline, which we investigate in our discussion section.

Table 2: Macro-averaged link prediction classification metrics

Dataset Method Precision (Macro) Recall (Macro) F1 (Macro)
Zillow Development sage_cosine 0.000457 0.193178 0.000913
Zillow Development sage_scene 0.000419 0.046864 0.00083
Zillow Development sage_self 0.006819 0.222706 0.013234
Zillow Development clip 0.008516 0.399308 0.016677
Zillow Test sage_cosine 0.347497 0.715822 0.467868
Zillow Test sage_scene 0.361937 0.587978 0.448063
Zillow Test sage_self 0.358647 0.592516 0.44683
Zillow Test clip 0.36339 0.605616 0.454228
MS-COCO sage_self 0.33162 0.560273 0.416637
MS-COCO sage_scene 0.344293 0.535681 0.419175
MS-COCO sage_cosine 0.326984 0.632623 0.43113
MS-COCO clip 0.547829 0.457524 0.498621

Table 3: Micro-averaged link prediction classification metrics

Dataset Method Precision (Micro) Recall (Micro) F1 (Micro)
Zillow Development sage_cosine 0.000004 0.000174 0.000008
Zillow Development sage_scene 0.000005 0.000051 0.000008
Zillow Development sage_self 0.000069 0.000469 0.00012
Zillow Development clip 0.000066 0.000492 0.000117
Zillow Test sage_cosine 0.035999 0.061335 0.045369
Zillow Test sage_scene 0.038723 0.054413 0.045246
Zillow Test sage_self 0.038353 0.054545 0.045038
Zillow Test clip 0.039976 0.056326 0.046763
MS-COCO sage_self 0.005677 0.005547 0.005611
MS-COCO sage_scene 0.005981 0.005074 0.00549
MS-COCO sage_cosine 0.005566 0.006929 0.006173
MS-COCO clip 0.007388 0.003791 0.005011

Figure 3 provides ROC curves to demonstrate link prediction performance over a range of possible
cosine similarity thresholds. We observe that on the MS-COCO dataset, our “self” and “scene”
based reconnection methods slightly outperform CLIP, while on the Zillow test dataset, all three
graph-based approaches appear to be on par with CLIP. On the Zillow development set, reconnection
methods that incorporate neighborhood information from the training graph perform worse than
random guessing, while the self-loop approach nearly performs as well as the baseline method.

Figure 4 (Appendix) shows a comparison of precision and recall by keyword for our best graph-based
approach (green) against our baseline CLIP method (pink) on top 10 most frequent keywords at each
model’s optimal prediction threshold. The keywords shown are sorted from top to bottom in order of
decreasing prevalence. We observe that performance varies significantly across keywords. Note that
we only show results by keyword for the top-performing reconnection approach for our graph-based
method (cosine for Zillow test data, scene for MS-COCO data).

6



Figure 3: Link Prediction ROC Curves for Zillow Test Set (1), Zillow Development Set (2), and
MS-COCO (3)

4.4 Discussion

We recall the two key hypotheses outlined earlier in our report: (1) learned GraphSAGE embeddings
would outperform CLIP embeddings as measured by link prediction performance, and (2) GraphSAGE
embeddings would improve on link prediction using only self-loops as seeded validation edges.

To summarize, we are not able to definitively confirm hypothesis 1 or hypothesis 2 in totality based
on our experimental results. However, we explore some promising observations in this section with
respect to both. Additionally, we offer concrete next steps in our conclusion for further exploration
that may yield clearer results.

First we discuss the role of noisy training labels by comparing results across datasets. In evaluation
link prediction results for the MS-COCO dataset, we note that graph-based approaches generally yield
better recall (micro and macro-averaged) and f1 (micro-averaged) scores across all three methods of
node reconnection. On Zillow’s test set, graph-based approaches still demonstrate strong performance,
though results are more comparable to the baseline.

However, the benefit of graph-based approaches becomes less clear upon analyzing performance on
Zillow’s development dataset. On Zillow’s weakly labeled development set, all three versions of our
approach underperform CLIP in nearly every metric (and notably in micro and macro F1). Figure 3
also shows that the self-loop method significantly outperforms the other two reconnection methods on
the Zillow development set. A possible explanation for performance inconsistencies across datasets is
the varying fidelity of keyword and scene labels across datasets. Notably, MS-COCO and the Zillow
test set have human-generated keyword labels, while the Zillow development set uses significantly
noisier machine-generated keyword labels.

This agrees with our theoretical understanding of our GraphSAGE implementation. Because node
embedding updates depend on neighboring nodes at various depths during GraphSAGE forward
inference, and keyword nodes generally have high in-degrees in our graphs, we expect noisier

7



keyword nodes to degrade performance. In short, CLIP appears to be more robust to noisy data while
the GraphSAGE approach may exhibit a higher ceiling for performance, albeit contingent upon a
reliably labeled dataset. Additional experiments introducing noise into MS-COCO keyword labels
may also help verify this finding, but we leave these to future research. We also speculate on the
effect of scale; In the original CLIP paper, robustness to noisy annotations is attributed to the scale
of the training dataset (4e7 annotated images), while our training datasets are on the order of 1e5
annotated images.

To understand differences between different reconnection methods in our graph-based approach, we
visualize node embeddings before and after GraphSAGE updates by projecting a sample of positive
and negative node pairs from the Zillow test set into 2D space using UMAP[7]. Additionally, for
the positive and negative pair samples, we plot changes in cosine similarity between inter-pair node
embeddings. Results are found in Figure 5 (Appendix). We can see through our UMAP plots and
associated bar plots that after GraphSAGE updates, updated embeddings of connected nodes are
generally more similar than those of unconnected nodes, which aligns with our expectations given
GraphSAGE’s contrastive learning objective. However, we do not observe significant differences in
the UMAP plots or associated bar plots across the three reconnection approaches, which may explain
why we do not see pronounced differences between our reconnection methods in link prediction
performance.

Ultimately, while we do not find our approach ready for deployment in its current state, we offer
specific next steps in the following section to explore potential design improvements.

5 Conclusions

The most significant takeaway from our work is the idea that not only can multiple modes of data
cooperate within a single store, but also that graph based learning can fuel more precise image
and text embeddings moving forward. Moreover, we see that our contrastive learning loss function
successfully results in learned embeddings that move connected nodes closer and unconnected (or
distantly connected) nodes further in embedding space. We hope further data enrichment (especially
connections between nodes) will yield improved performance- a result that informs this project and
others as well.

Of course, we caveat the takeaways of our work in multiple ways. Most importantly, while we
have reason to believe that optimized graph based learning can yield useful results, our experiment
here does not give conclusive evidence to the effect. Given the inconsistencies in our results across
datasets, additional experimentation is required as a prerequisite to solid conclusion. Additionally,
our approach to our GNN can still be further optimized. These shortcomings, however, can certainly
be rectified. Next, we provide a roadmap for addressing these caveats en route to pursuing a more
definitive final result.

As a first step, we recommend employing strong regularization in updating node embeddings. This
would help address some of the sparsity that resulted from implementing contrastive loss and would
also make our solution more robust to noisy data and more consistent across datasets. Regularization
can come in simple forms such as GNN dropout, but can also be implemented more granularly with a
method such as enforcing a limit on “sparse” entries (entries less than some threshold) allowed in
each embedding. Additionally, we recommend the utilization of edge weights in the GraphSAGE
implementation. These weights can present node connections probabilistically instead of forcing a
dichotomous representation. Consequently, this can help mitigate impacts of noisy data by capturing
uncertainty. Finally, we also recommend importing additional node and edge types to capture more
types of relationships within Zillow’s data. For example, connecting nodes by attributes such as home
price or date uploaded would offer additional forms of neighborhood data for GraphSAGE to learn
from and use in link prediction.

In addition to thoroughly addressing the aforementioned action items, there is remaining room to
explore within this general topic. Additional future work could include implementing multi-modal
search (where a user can search for a listing using images and/or text) or fine-tuning recommender
systems to suggest listings to users. Otherwise, there are many practical applications to choose from
as a follow-up to this effort.

8



6 Lessons Learned

Here, we focus on two lessons that were instrumental for our team during this effort. One, our team
was able to identify a need for technical standardization and address it through version control and
shared coding principles. Two, our team was able to rapidly iterate in order to receive concrete
feedback and progress. Below, we elaborate slightly on both lessons.

As we began developing solutions for this project, we noticed discrepancies in how our code was
organized and written. This included directory management, file formats, and maintenance of our
GitHub repository. As our codebase began to approach a level of unwieldiness, we met as a team
and established a consistent environment (including package versions, directory structure) across our
team. We also established norms for our repository and modularized our code into accessible scripts
with documented command-line arguments. We felt that these were effective solutions and will be
carried into future projects.

At the onset of our project, we were primarily equipped with our end goal (in the form of our project
statement). As such, we developed work with that goal in mind. However, this resulted in large
chunks of work and did not allow for frequent feedback from our mentors at Zillow. To adapt, we
began to set smaller goals at a weekly cadence and incorporated feedback from our weekly meetings
with the team at Zillow. Again, this was an effective change and would be welcome in similar settings
in the future.

7 Student Contributions

David Roth: Contributed code to GraphSAGE implementation/training, DGL graph construction,
hyperparameter evaluation and model deployment on NYU’s cluster. Also contributed to report
writing and typesetting.

Andre Chen: Contributed significant code to generate MS-COCO CLIP embeddings, build MMKGs
for MS-COCO and Zillow datasets, implement GraphSAGE model training, compute metrics, and
plot results. Also contributed to report writing and poster presentation.

Tanya Naheta: Researched related work and provided initial design recommendations and baseline
metrics. Also contributed to report writing and final poster presentation.

Adi Srikanth: Contributed code to GraphSAGE implementation, basic metrics generation, scene-
reconnection experiment, and link prediction validation method. Also contributed to report writing
and poster presentation.

9



8 References

References
[1] Shaosheng Cao, Wei Lu, and Qiongkai Xu. GraRep: Learning graph representations with global

structural information, 2015. URL https://doi.org/10.1145/2806416.2806512.
[2] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks, 2016.

URL https://arxiv.org/abs/1607.00653.
[3] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large

graphs, 2017. URL https://arxiv.org/abs/1706.02216.
[4] Shima Khoshraftar and Aijun An. A survey on graph representation learning methods, 2022.

URL https://arxiv.org/abs/2204.01855.
[5] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional

networks, 2016. URL https://arxiv.org/abs/1609.02907.
[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays,

Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft COCO:
Common objects in context, 2014. URL https://arxiv.org/abs/1405.0312.

[7] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction, 2018. URL https://arxiv.org/abs/1802.03426.

[8] Aashish Kumar Misraa, Ajinkya Kale, Pranav Aggarwal, and Ali Aminian. Multi-modal
retrieval using graph neural networks, 2020. URL https://arxiv.org/abs/2010.01666.

[9] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations, 2014. URL https://doi.org/10.1145/2623330.2623732.

[10] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

[11] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: Large-
scale information network embedding, 2015. URL https://doi.org/10.48550/arXiv.
1503.03578.

[12] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding, 2016. URL
https://doi.org/10.1145/2939672.2939753.

[13] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks,
2019. URL https://arxiv.org/abs/1909.01315.

10

https://doi.org/10.1145/2806416.2806512
https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/2204.01855
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/2010.01666
https://doi.org/10.1145/2623330.2623732
https://arxiv.org/abs/2103.00020
https://doi.org/10.48550/arXiv.1503.03578
https://doi.org/10.48550/arXiv.1503.03578
https://doi.org/10.1145/2939672.2939753
https://arxiv.org/abs/1909.01315


A Appendix

Below we present additional figures from our experiments to supplement findings and key insights
from section 4.

Figure 4: Classification metrics (precision and recall) by keyword

11



Figure 5: Analysis of 10 randomly sampled positive and negative node pairs from the Zillow test
set graph before and after GraphSAGE updates. In each row, the left two plots show 2D UMAP
projections of embeddings before (light shade) and after (dark shade) GraphSAGE updates for
positive, connected node pairs (first plot) and negative, unconnected node pairs (second plot). The
right-most plot in each row shows change in cosine similarity for positive and negative node pairs
after applying GraphSAGE updates. In both the first and second pair plots, node pairs have the same
color and number label.

12


	Introduction
	Related Work
	Problem Definition and Algorithms
	Task
	Algorithms
	GraphSAGE
	Link Prediction


	Experimental Evaluation
	Data
	MS-COCO Dataset
	Zillow Dataset

	Methodology
	Multimodal Graph Construction
	GraphSAGE Training
	GraphSAGE Evaluation

	Results
	Discussion

	Conclusions
	Lessons Learned
	Student Contributions
	References
	Appendix

